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If there 1s no deformatic,n anisotropy, l.e., P,~ y= 0 then the coordinate axes .r,. .I‘.’ 
should be selected so that one of them ( x2, say) coincides with the projection of I on the 
plane of the wave front. Then a, 0, s = 0, g* = ‘:,mcz,2. As is shown in /l, 2/, In order to 
be able to describe the behaviour of shocks in the whole UL' plane, i.e., to havethecomplete 
shock adiabaticpassingthroughthe point .4 (C', V) corresponding to the state before the lump 

(Fig.2), the anisotropy parameter fi+ should be small, of the order of N' - E2. where R 1s 
the radius of the circle passing through the origin on which S conr;t. In this case I(' 

fj2 -I- (V - wa2aJ2. In order that g*- H'. It_ 1s either necessary to have a sufficiently 

small anisotropy such that czcznlts - F (at least along the .r? axis), or the quantity a, is 

small because the direction of wave propagation (the J axis) is close to 1. 
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TWO APPROACHES TO THE INVESTIGATION OF ANTIPLANE DEFORMATION OF AN 
ISOTROPIC SOLID WITH A THIN ELASTIC INCLUSION* 

V.K. OPANASOVICH 

An approach is proposed to the investigation of the state of stress and 

strain of a piecewise-homogeneous plane consisting of a matrix and a thin 

tunnel-like rectangular inclusion with rounded-off corners under the 

assumption that such a composite body is under antiplane deformation 
conditions. A numerical comparison is made of the results obtained in 
this paper and on the basis of an approximate model /l/. It is shown that 

they agree satisfactorily at sufficiently large distances from the 

vertices of the inclusion, when the inclusion is more pliable than the 

matrix. 

1. We assume that ideal mechanical contact conditions are satisfied on the material 
interfacial line L. We select an 0~~2 system of Cartesian coordinates with origin at the 
centre of a rectangular inclusion and the Oz.axis directed along the axis of bodydeformation. 
We know that the function reflecting the unit circle y on the contour L has the form /2, 3/ 

*Prik.Z.Natem.Mekhan.,52,1,116-119,1988 
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According to the formulation of the problem, the conditions 

z = +rO, awdas = BwJds (1.2) 

should be satisfied on the line L. 
Bere T is the stress vector on the material interfacial line, w is the non-zero dis- 

placement vector component, s is the arc coordinate of the line L, and the zero subscript 
denotes that the corresponding quantity is referred to the inclusion. 

We wi.Ll introduce the stress function F(z) into our consideration /4/. Then the 
relationships 

Q, (a} - u-%-@ =-2ipallo’ (u)pw/as (1.3) 
@ (0) + u-pQD(af = 2zu-+d {@I; u E y 

@ (a) = F (0 (a)) 0‘ (a) 

can be written. 
For simplicity we will assume that the function F(Z) has the following form for large z: 

F (z) =--iq + 0 (KS) (1 4 
(q/z” = % is the tangential stress component at infinity). 

Taking the relationships (1.3) into account, the boundary conditions (1.2) can then be 
written in the form 

PO i@(c) - - c-*a (a)1 = /A [Q, (u) - u-'CDo (a)1 (1.5) 

@(a)fu-2v= Q,, (a) + 6"@, (a); Q E y 

We will. seek the function Q,(Q) in the form 

where Ar are unknown coefficients which we find on the basis of a system of linear algebraic 
equations obtained from the boundary conditions of the problem 

A-1 = 0, A0 = ‘I, (0 + 1) Rq (x’ - 1) + wl-, 
Ai = Xd+i+e, i = 1, 27. * .( N; Do.0 = 1, Do,1 = 0, j Z 0 

k > 1, Dr, j = R {Dx-L j-1 f PSI %Dk-1, j+rt) 

j =i - nk, -nk + 1,. . ., k 

Dr. j =O, i<-nkVi>k; x=(13--W@+f), B =~lda 

Taking account of relationships (1.6) and (1.4) we find on the basis of (1.5) 

clt (q) = iRzt (sq** - 1) + (1.7) 

We note that as po-+O we obtain an expression for the function O((tl) from (1.7) for 
a body with an unloaded hole, as *o-* * for a body with a stiff inclusion, and for PO = P 
the solution of the problem for a homogeneous body. If we set c,= m and n = 1(0 Q ?n < I)$ 
we arrive at a solution of the problem for a body with an elliptical inclusion that agrees 
with the solution obtained by other means /6/. 

Using the formula z,, - irVL = ~(~)/~'(~) and taking (1.71 into account we arrive at the 
following expression to determine the stress in the matrix at a pointsonthe real axis: 

z=R(r+ $ckrwM), r>l, T*,,==O 
k-1 

M 
i 

%p=-o’lr) i’? &r-k - 1) Tl + &z A-kr-k-j 

k=-z 

We wiL1 represent the stress function F,(z) for the inclusion in the form 
N+l 

Fo(z)=i kzI &sk-' 0.8) 
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Taking (1.G) into account we will have the following relationships to determlne the 
coefficients Bk: 

B, = i AkY”. k+, 
k=n-* 

k-2 

Y1.1 = +- 9 Yl.2 = 07 PI. k = - c Yl. jck-j -1 

j=l 

k=3,4,...,N+l 
m-k 

‘&+I. m = iz, Yr. ~-,YI. ii m = k f i, k f 2, . . ., N + 1; 

k=l,2, ., .,,V 

c,=O, i>n 

A numerical experiment showed that the functions (1.7) and (1.e) satisfy the boundary 
conditions (1.2), dependent on the parameter N, quite accurately. 

Since T, - iTvz = F (z), then by using (1.8) we arrive at the following expressions to 
determine the state of stress in the inclusion on the real axis 

2. For a rectangular thin-walled inclusion of constant thickness 2h and length 2 the 
function F(z) has the form /l/ 

where Xk = ncyk and Skis the solution of the system of linear algebraic equations (6," is 
the Kronecker delta) 

M 

-gY”t-&& H(2k - 1, 2n - I) = 81,, n = 1,2, . . ., III 

k=l 

Hh, 4 = (m+&_-l - 1 

(m-n)*- 1 

We select the constant c twice: as in /l/ 

and on the basis of the method proposed in /7/ 

h + d (2 + h) 
Y==arctg l+d(2_hh) , d = 2-‘11 (I + 4h-‘)‘/a 

P = [(I + (2 - h) d)’ +;(h + (2 + h) d)*l”- 

(2.1) 

(2.2)’ 

We determine the stresses on the real axis in both the matrix and the inclusion from the 
formulas 

7 

n=O,O<zZ=J (2.3) 

& Uktk-lJ(d + c + 1, o<z< 1 

3. The problem was analysed numerically for n== ii. In this case the values of the coef- 
ficients cL are presented in /2, 3/. 

The dependence of the stress % on the coordinate I is given in Fig.1 fortherelative 
stiffness of the inclusion and matrix p=O.i (curves 1 and 3) and B.-i0 (curve 2) forvalues 
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h=0.1,0.006 of the height of the inclusion (curves 1, 2, 3, respectively). The pointsdenote 
values of the stresses calculated by means of (2.3) for a constant c determined by means of 
(2.1), and the crosses are values of the same stress but with (2.2) used for c. It is seen 
that in the first case the inclusions (stiffer than the matrix) do not influence the body 
state of stress, i.e., this constant can be used only for Po<c. Moreover, the model of the 
inclusion /l/ describes the state of stress far from the vertex of the inclusion comparatively 
well. It should be noted that there is a point on the real axis where the stresses reach the 
maximum value for the approach described in Sect-l, for PO < P near the vertexoftheinclusion 
in the matrix. 

.a 
Fig.1 

-4 II 191' y 

Fig.2 

Fig.2 shows the dependence of the stress 7vr* on the relative stiffness f? inthematrix 

a 

(solid lines) and in the inclusion (dashes) at an endface point for ==i, @=6, and for 
values of the height of the inclusion h=O.f, 0.025,0.006 (curves 2, 2, 3, respectively). 
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